EcoLOGIcal Studies in the Neotropical Cloud Forests of Colombia

By Carolina Alcázar Caicedo and Beatriz Eugenia Salgado Negret

Located in the southwest of Colombia, the department of Cauca, with an area of 29.3 km², is considered a diverse region. Just 2.7 percent of the Colombian territory, this area is a complex system, with inter-Andean valleys and the influence of the Amazon basin, with the Caquetá River and Chocó biogeographic elements in the west slope of the Western Cordillera. The region, originating from geomorphologic and climatic differences, has evolved a high level of biological diversity.

The cloud forests of Cauca are located between the Western Cordillera and the Pacific coast. They contain unique biological characteristics, not only due to its sustained cloudiness, broken topography and low brightness, but also due to the abiotic elements of the Chocó region, like high precipitation, humidity and extreme local endemism. Unfortunately, these forests are threatened, mainly due to habitat fragmentation, deforestation and colonization.

In this respect, the Wildlife Management and Conservancy Study Group (GEMA VIC) of the University of Cauca began a research project in 1999 entitled “Ecology and Conservancy of the Cauca Cloud Forest.” The purpose of the project is to gain an understanding into the internal ecosystem dynamics, and provide management and conservation tools for government and academic environmental institutions, in addition to the people of this region, who have lived for years using the natural resources of this ecosystem.

Over the last two years, studies in ethnobotany, vegetation composition and structure, and ornithological species richness, abundance and dominance were developed and analyzed in the Pacific Environmental Study Center of “Tambito” (1200-2400 m) and in the Munchique National Park (2600 m), both in El Tambo municipality. GEMAVIC has provided valuable data in several subjects such as species taxonomy, identification of species rich regions and vulnerable areas, and flora and fauna interactions, which are all relevant to the restoration and conservation of this vital ecosystem.

It has become necessary to acquire additional funds to continue this project into its second phase, not only to maintain the research of the Cauca cloud forest, but also to sustain efforts in participative community conservation. For further information about GEMAVIC, send e-mail to gemavic@ucauca.edu.co.

Rare Mauritian Plant Produces Fruit

The Café Marron (*Ramosmania rodriguesii*), a member of the coffee family, is one of world’s rarest plants. It is endemic to the island of Rodrigues in Mauritius where only one plant remains in the wild. In 1986 a conservation initiative was launched to rescue this plant from extinction involving IUCN, Royal Botanic Gardens Kew and the Mauritian Forestry Service. Plants propagated in Kew and elsewhere, however, are all clones of the plant in the wild. No fruit were produced by any of these plants in the wild or in cultivation since the wild plant was found in 1980. Scientific research indicated that the pollen tube fails to grow through the style and that producing seed was impossible. Studies had shown, however, that the pollen was viable in culture.

Based on these studies at the Micropropagation Unit in Kew, Viswambharan Sarasan developed a method to pollinate the flowers. This involves the elimination of the barrier which prevents successful fertilization. The first batch of pollination yielded two fruits. Some seeds sown in vitro and two seedlings have been raised so far. The Millennium Seed Bank, Kew’s seed banking facility, has got the seeds of the plant now in their storage facility.
This breakthrough is significant in many ways. Production of seeds, eventually, has the potential to create genetic diversity and will be highly significant in future repatriation of this plant. For more information contact: Dr. V. Sarasan, Micropropagation Unit, Royal Botanic Gardens Kew, Richmond TW9 3AB, UK; E-mail: v.sarasan@rbgkew.org.uk.

CURRENT LITERATURE

Calaforra, J.M., Fernández-Cortés, A., Sánchez-Martos, F.,
Casart, L. 2003. The biology of a catfish,
Caravaca, F., Alguacil, M.M., Figueroa, D., Barea, J.M., and
Effects of a highway and mitigation projects on bobcats in
Calfon, J.M., Fernández-Calderón, A., Sánchez-Martos, F.,
control for determining human impact and permanent visitor
capacity in a potential show cave before tourist use. *Environ.
ization of microsatellite loci in the blue-and-gold macaw, *Ara
Caravaca, F., Alguacil, M.M., Figueroa, D., Barea, J.M., and
Roldán, A. 2003. Re-establishment of *Retama sphaerocarpa*
as a target species for reclamation of soil physical and bio-
logical properties in a semi-arid Mediterranean area. *Forest
Caro, T., Mulder, M.B., and Moore, M. 2003. Effects of con-
servation education on reasons to conserve biological diver-
Casatti, L. 2003. Biology of a catfish, *Trichomycterus sp.* (Pi-
scines, Siluriformes), in a pristine stream in the Morro do Diabo
Environ.* 38(2):105-110.
Castro, I., Brunton, D.H., Mason, K.M., Ebert, B., and Griffiths,
R. 2003. Life history traits and food supplementation affect
productivity in a translocated population of the endangered
271-280.
Caswell, H., Lensink, R., and Neubert, M.G. 2003. Demogra-
phy and dispersal: life table response experiments for inva-
molecular markers identifies evolutionarily significant units
Stanhope, M.J., and Shivji, M.S. 2003. A streamlined, bi-
orangelle, multiplex PCR approach to species identification:
application to global conservation and trade monitoring of
the great white shark, *Carcharodon carcharias*. *Conserv.
Chown, S.L., and Freitag-Ronaldson, S. 2002. Survey site se-
lection for data-deficient arthropod taxa: from rags to rich-
Cunningham, A.A., Prakash, V., Pain, D., Ghalsasi, G.R., Welis,
G.A.H., Kolte, G.N., Nighot, P., Goudar, M.S., Kshirsagar,
S., and Rahmani, A. 2003. Indian vultures: victims of an in-
tensive versus diffuse population bottleneck on microsatellite
Chown, S.L., and Freitag-Ronaldson, S. 2002. Survey site se-
lection for data-deficient arthropod taxa: from rags to rich-
Cunningham, A.A., Prakash, V., Pain, D., Ghalsasi, G.R., Welis,
G.A.H., Kolte, G.N., Nighot, P., Goudar, M.S., Kshirsagar,
S., and Rahmani, A. 2003. Indian vultures: victims of an in-
tensive versus diffuse population bottleneck on microsatellite
Chown, S.L., and Freitag-Ronaldson, S. 2002. Survey site se-
lection for data-deficient arthropod taxa: from rags to rich-
Cunningham, A.A., Prakash, V., Pain, D., Ghalsasi, G.R., Welis,
G.A.H., Kolte, G.N., Nighot, P., Goudar, M.S., Kshirsagar,
S., and Rahmani, A. 2003. Indian vultures: victims of an in-
tensive versus diffuse population bottleneck on microsatellite
Chown, S.L., and Freitag-Ronaldson, S. 2002. Survey site se-
lection for data-deficient arthropod taxa: from rags to rich-
Cunningham, A.A., Prakash, V., Pain, D., Ghalsasi, G.R., Welis,
G.A.H., Kolte, G.N., Nighot, P., Goudar, M.S., Kshirsagar,
S., and Rahmani, A. 2003. Indian vultures: victims of an in-
tensive versus diffuse population bottleneck on microsatellite
Chown, S.L., and Freitag-Ronaldson, S. 2002. Survey site se-
lection for data-deficient arthropod taxa: from rags to rich-
Cunningham, A.A., Prakash, V., Pain, D., Ghalsasi, G.R., Welis,
G.A.H., Kolte, G.N., Nighot, P., Goudar, M.S., Kshirsagar,
S., and Rahmani, A. 2003. Indian vultures: victims of an in-
tensive versus diffuse population bottleneck on microsatellite
Chown, S.L., and Freitag-Ronaldson, S. 2002. Survey site se-
lection for data-deficient arthropod taxa: from rags to rich-

Quinlan, A., Dale, M.R.T., and Gates, C.C. 2003. Effects of prescribed burning on herbaceous and woody vegetation in...

