Untangling Fish Tales

This past spring, estuarine ecologist Denise Breitburg and her postdoctoral fellow, Richard Fulford (both of the Smithsonian Environmental Research Center (SERC)) brought together 20 ecologists and fisheries biologists from academic institutions, government agencies and the Smithsonian for a three-day workshop to attempt to “disentangle” the effects of eutrophication (excessive nutrient input) and fishing on estuarine food webs.

Around the world overall fish catches are in decline, habitat for many species is shrinking, and environmental organizations and regulators are searching for ways to reverse these trends. Global fish catches peaked in the late 1980s and have been in decline ever since. With such straightforward facts, it is tempting to make the conclusions that overfishing is at the root of diminished fish catch, and agricultural runoff and sewage effluence are responsible for habitat destruction. But over the past decade or so, it’s become clear that very little surrounding these issues is simple and straightforward.

Multiple stressor factors such as nutrient overload and fishing pressure often interact with one another, sometimes masking the effects of one another and at other times amplifying them. Determining the cause and effect of environmental degradation and multiple stressors has challenged researchers around the world.

Nutrient enrichment from sources such as agricultural runoff and sewage usually increases the population of microscopic plant species or phytoplankton. As a result, the phytoplankton-eaters increase in numbers, providing more prey for the larger organisms. This in turn can result in an increase in the numbers of some top consumers. Sometimes these are the commercially valuable fish that managers monitor to determine the health of a system.

At the same time, however, increases in phytoplankton reduce dissolved oxygen levels in deeper waters which diminishes habitat for deepwater organisms. These organisms may then migrate out of the low-oxygen zones and concentrate in other areas where they can become concentrated prey for fishermen, and sometimes artificially boost the survey numbers.

In such instances, it may be difficult to determine if high fish landings are the result of high overall fish populations, the concentration of fish seeking refuge from habitat loss, or the result of increased fishing effort and efficiency.

Researchers and managers agree that despite the difficulties, it is imperative that we learn how to effectively manage both nutrient loading and fishing pressures. “One of the triggers for this kind of workshop was what’s going on with water quality and fisheries management in Chesapeake Bay,” Breitburg said.

“One thing that really came out in this workshop,” Breitburg said, “is that estuaries tend to be pretty resilient to the insults people throw at them.” The nature of estuaries, with their mix of salt and fresh water and widely varying conditions, is exactly what makes them so hardy. Estuarine species tend to be generalists and can withstand a wide range of conditions. Although overfishing can nearly decimate a population, fishing stops when it is no longer a viable source of income. According to Breitburg, “you rarely get a complete local extinction. So, once you take proper management steps for recovery most species rebound.”

Information Highway Hi-Lites

Founded in 1982, the mission of Bat Conservation International (BCI) <http://www.batcon.org/home/default.asp> is “to teach people the value of bats, to protect and conserve critical bat habitats, and to advance scientific knowledge through research”. On their Web site, visitors will be able to learn about their advocacy and outreach efforts, along with learning more about these fascinating and important creatures. The “All About Bats” section is
a fine place to start, as it has a number of illustrated essays that include brief overview of the natural history of bats and suggestions on photographing bats as they fly through the air. Equally compelling is the section is the conservation programs area, which details the various programs BCI operates in various bat habitats, including bridges and caves.

Current Literature

Lozano, F.D., and Schwartz, M.W. 2005. Comparative taxonom-

Ramey, R.R., Liu, H.P., Epps, C.W., Carpenter, L.M., and Wehausen, J.D. 2005. Genetic relatedness of the Preble's...
Rodríguez, J.P., Good, T., and Dirzo, R. 2005. Diversitas and
Rondinini, C., Stuart, S., and Boitani, L. 2005. Habitat suitabil-
Rodríguez, J.P. 2005. Threatened species initiative funds con-
Rice, B., and Brittnacher, J. 2005. The ICPS Sarracenia distribu-
tucker, bush pets, and bush threats: cooperative management
Rao, M.H., Myint, T., Zaw, T., and Htun, S. 2005. Hunting pat-
Ratcliffe, N., Schmitt, S., and Whiffin, M. 2005. Sink or swim?
Ranasinghe, J.A., Mikel, T.K., Velarde, R.G., Weisberg, S.B.,
Meadow jumping mouse (Zapus hudsonius preblei) to nearby
subspecies of Z. hudsonius as inferred from variation in cran-
ial morphology, mitochondrial DNA and microsatellite DNA:
8:329-346.
Ranasinghe, J.A., Mikel, T.K., Velarde, R.G., Weisberg, S.B.,
emigrants and their effects on benthic macroinvertebrate
Rao, M.H., Myint, T., Zaw, T., and Htun, S. 2005. Hunting pat-
terns in tropical forests adjoining the Hkakaborazi National
Ratcliffe, N., Schmitt, S., and Whiffin, M. 2005. Sink or swim?
Viability of a black-tailed godwit population in relation to
1341-1343.
of Acer platanoides invasion on understory plant communities
tree regeneration in the northern Rocky Mountains.
Ecography 28(5):573-582.
Rice, B., and Brittnacher, J. 2005. The ICPS Sarracenia distribu-
tucker, bush pets, and bush threats: cooperative management
of feral animals in Australia’s Kakadu National Park. Conserv.
Rodríguez, J.P. 2005. Threatened species initiative funds con-
servation projects on behalf of Venezuelan animals and plants.
Rodríguez, J.P., Good, T., and Dirzo, R. 2005. Diversitas and
the challenge of Latin American biodiversity conservation.
Interciencia 30(8):450.
versity, and competitive effects interact to determine the
invasibility of rock pool microcosms. Biol. Invasions 7(4):711-
722.
Rondinini, C., Stuart, S., and Boitani, L. 2005. Habitat suitability
models and the shortfall in conservation planning for Af-
Sabo, J.L. 2005. Stochasticity, predator-prey dynamics, and trig-
Sadovy, Y. 2005. Trouble on the reef: the imperative for manag-
ings vulnerable and valuable fisheries. Fish Fish. 6(3):167-
185.
Schaffelke, B., and Deane, D. 2005. Desiccation tolerance of
the introduced marine green alga Codium fragile ssp. tomen-
tosoides - clues for likely transport vectors? Biol. Invasions
Schwartz, T.S., Jenkins, F., and Beheregarray, L.B. 2005. Mi-
crosatellite DNA markers developed for the Australian bass
(Macquaria novemaculeata) and their cross-amplification in estu-
Scott, J.M., Goble, D.D., Wiens, J.A., Wilcove, D.S., Bean, M.,
and Male, T. 2005. Recovery of imperiled species under the
Scott, R.J., Poos, M.S., Noakes, D.L.G., and Beamish, F.W.H.
2005. Effects of exotic salmonids on juvenile Atlantic salmon
Selbo, S.M., and Snow, A.A. 2005. Flowering phenology and
genetic similarity among local and recently introduced popu-
lations of Andropogon gerardii in Ohio. Restor. Ecol. 13(3):
441-447.
Shepherd, T.D., and Myers, R.A. 2005. Direct and indirect fish-
ery effects on small coastal elasmobranchs in the northern
Shoo, L.P., Williams, S.E., and Hero, J.M. 2005. Potential de-
coupling of trends in distribution area and population size of
species with climate change. Global Change Biol. 11(9):
1469-1476.
Smith, R.J., and Walpole, M.J. 2005. Should conservationists
pay more attention to corruption? Oryx 39(3):251-256.
Smith, S.A., and Bromhingham, E. 2005. The biogeography of
lower Mesoamerican freshwater fishes. J. Biogeogr. 32(10):
1835-1854.
Soutullo, A., Dodsworth, S., Heard, S.B., and Mooers, A.O.
2005. Distribution and correlates of carnivore phylogenetic
Sparks, D.W., Ritzi, C.M., Duchamp, J.E., and Whitaker, J.O.
2005. Foraging habitat of the Indiana bat (Myotis sodalis) at
Stephen, C.L., Devos, J.C., Lee, T.E., Bickham, J.W., Heffelfinger,
Sonoran pronghorn (Antilocapra americana sonoriensis). J.
Mammal. 86(4):782-792.
Stevenson, P.R., Link, A., and Ramirez, B.H. 2005. Frugivory
and seed fate in Bursera inversa (Burseraceae) at Tinigua
Park, Colombia: implications for primate conservation. Bio-
tropica 37(3):431-438.
Stohlgren, T.J., Barnett, D., Flather, C., Kartesz, J., and Peter-
john, B. 2005. Plant species invasions along the latitudinal
Stokstad, E. 2005. What’s wrong with the Endangered Species
Sutherland, W.J., Pullin, A.S., Dolman, P.M., and Knight, T.M.
Thieltges, D.W. 2005. Benefit from an invader: American slip-
per limpet Crepidula fornicata reduces star fish predation on
basibiont European mussels. Hydrobiologia 541:241-244.
on the demography of a rare endemic plant. Biol. Invasions
7(4):615-624.
Torchin, M.E., Hechinger, R.F., Huspeni, T.C., Whitney, K.L.,

