Vine-Choked Forests Can’t Capture Carbon

-Adapted from Smithsonianscience.org

Tropical forests are a sometimes underappreciated asset in the battle against climate change. They cover 7 percent of land surface yet hold more than 30 percent of Earth’s terrestrial carbon. As abandoned agricultural land in the tropics is taken over by forests, scientists expect these new forests to mop up industrial quantities of atmospheric carbon. New research by Smithsonian scientists shows increasingly abundant vines could hamper this potential and may even cause tropical forests to lose carbon.

In the first study to experimentally demonstrate that competition between plants can result in ecosystem-wide losses of forest carbon, scientists working in Panama showed that lianas, or woody vines, can reduce net forest biomass accumulation by nearly 20 percent. Researchers called this estimate “conservative” in findings published in *Ecology*.

“This paper represents the first experimental quantification of the effects of lianas on biomass,” said lead author Stefan Schnitzer, a research associate at the Smithsonian Tropical Research Institute and professor at the University of Wisconsin-Milwaukee. “As lianas increase in tropical forests, they will lower the capacity for tropical forests to accumulate carbon.”

Previous research by Schnitzer and others demonstrated that lianas are increasing in tropical forests around the globe. No one knows why. Decreased rainfall is one suspect, but lianas, which are generally more drought-tolerant than trees, are increasing in abundance even in rainforests that have not experienced apparent changes in weather patterns.

Lianas climb trees to reach the forest canopy where their leaves blot out the sunlight required for tree growth. They account for up to 25 percent of the woody plants in a typical tropical forest, but only a few percent of its carbon. They do not compensate for displaced carbon due to relatively low wood volume, low wood density and a high rate of turnover.

Machetes in hand, Schnitzer and colleagues chopped lianas out of forest plots for this study. After collecting eight years of data comparing liana-free plots with naturally liana-filled plots in the same forest, they quantified the extent to which lianas limited tree growth, hence carbon uptake. In gaps created by fallen trees, lianas were shown to reduce tree biomass accumulation by nearly 300 percent. Findings by Schnitzer and colleagues, also published this year in *Ecology*, showed that liana distribution and diversity are largely determined by forest gaps, which is not the case for tropical trees.

Arid conditions in gaps are similar to recently reforested areas. “The ability of lianas to rapidly invade open areas and young forests may dramatically reduce tropical tree regeneration—and nearly all of the aboveground carbon is stored in trees,” said Schnitzer. Lianas have been shown to consistently hinder the recruitment of small trees, and limit the growth, fecundity and survival of established trees.

“Scientists have assumed that the battle for carbon is a zero-sum game, in which the loss of carbon from one plant is balanced by the gain of carbon by another. This assumption, however, is now being challenged because lianas prevent trees from accumulating vast amounts of carbon, but lianas cannot compensate in terms of carbon accumulation,” said Schnitzer. “If lianas continue to increase in tropical forests, they will reduce the capacity for tropical forests to uptake carbon, which will accelerate the rate of increase of atmospheric carbon worldwide.”

Current Literature

Alonso, M.A., Guilló, A., Pérez-Botella, J., Crespo, M.B., and Juan, A. 2014. Genetic assessment of population restorations...

Major, R.E., Johnson, R.N., King, A.G., Cooke, G.M., and Sladek, J.L.T. 2014. Genetic isolation of endangered bird populations inhabiting salt marsh remnants surrounded by intensive urban-

Nijman, V. 2014. Fact or fiction. Be prudent and accurate when
attaching monetary value to threatened wildlife (a comment to Douglas and Alie (2014)). *Biol. Conserv.* 179:148-149.

Ramos, C.C.D., and dos Anjos, L. 2014. The width and biotic integrity of riparian forests affect richness, abundance, and com-
Ramos-Lara, N., and Koprowski, J.L. 2014. Deforestation and
knowledge gaps threaten conservation of less charismatic
species: status of the arboreal squirrels of Mexico. Mamma-
Fish community responses to the combined effects of decreased
hydropower and nonnative fish invasions in a karst wetland:
are Everglades solution sinks for native fishes? Wetlands
34:S159-S173.
Reid, B.N., and Peery, M.Z. 2014. Land use patterns skew sex
ratios, decrease genetic diversity and trump the effects of
recent climate change in an endangered turtle. Divers. Dis-
trib. 20(12):1425-1437.
Which food-mimic floral traits and environmental factors influ-
ence fecundity in a rare orchid, Calanthe yaoshanensis? Bot.
Rengstorf, A.M., Mohn, C., Brown, C., Wisz, M.S., and Grehan,
A.J. 2014. Predicting the distribution of deep-sea vulnerable
marine ecosystems using high-resolution data: considerations and
Rewicz, T., Grabowski, M., MacNeil, C., and Baçela-Spychalska, K.
2014. The profile of a ‘perfect’ invader - the case of killer shrimp,
Rezende, V.L., Eisenlohr, P.V., de Gasper, A.L., Vibrans, A.C., and
de Oliveira, A.T. 2014. Toward a better understanding of the
subtropical Atlantic Forest in the state of Santa Catarina, Bra-
zil: tree sampling accuracy, species richness and frequency of
Robin, V.V., Vishnudas, C.K., and Ramakrishnan, U. 2014. Reas-
 sessment of the distribution and threat status of the Western
Rocha-Ramirez, A., Robles-Valderrama, E., and Ramirez-Flores, E.
2014. Invasive alien species water hyacinth Eichhornia crassipes
as abode for macroinvertebrates in hypertrophic Ramsar Site, Lake
Community-level demographic consequences of urbanization: an
Rodríguez-Loinaz, G., Alday, J.G., and Omundia, M. 2015. Multiple
ecosystem services landscape index: a tool for multifunctional
Rodríguez-Peña, R.A., Jestrow, B., Cinea, W., Veloz, A., Jiménez-
Rodríguez, F., García, R., Meerow, A.W., Griffith, M.P., Maun-
der, M., and Francisco-Ortega, J. 2014. Conservation and genet-
ics of two Critically Endangered Hispaniolan palms: genetic
erosion of Pseudophoenix lediniana in contrast to P. ekmanii.
Rojo, I., Olabarria, C., Santamario, M., Provan, J., Gallardo, T., and
Viejo, R.M. 2014. Coexistence of congeneric native and inva-
sive species: the case of the green algae Codium spp. in
Roosnburg, W.M., Spontak, D.M., Sullivan, S.P., Matthews, E.L.,
Heckman, M.L., Trimboth, R.J., Dunn, R.P., Dustman, E.A.,
Smith, L., and Graham, L.J. 2014. Nesting habitat creation
enhances recruitment in a predator-free environment: Mala-
clemys nesting at the Paul S. Sarbanes Ecosystem Restoration
Tools for thinking applied to nature: an inclusive pedagogical
Rosin, C. 2014. Does hunting threaten timber regeneration in selec-
Rovero, F., Menegon, M., Fjeldså, J., Collett, L., Diggart, N.,
Leonard, C., Norton, G., Owen, N., Perkin, A., Spittle, D.,
Ahrends, A., and Burgess, N.D. 2014. Targeted vertebrate sur-
veys enhance the faunal importance and improve explanatory
models within the Eastern Arc Mountains of Kenya and Tan-
Roy, H.E., Peyton, J., Aldridge, D.C., Bantock, T., Blackburn,
T.M., Britton, R., Clark, P., Cook, E., Dehnenschmutz, K.,
Dines, T., Dobson, M., Edwards, F., Harrower, C., Harvey,
M.C., Minchin, D., Noble, D.G., Parrott, D., Pocock, M.J.O.,
Premston, C.D., Roy, S., Salisbury, A., Schönrogge, K., Sewell,
2014. Horizon scanning for invasive alien species with the poten-
tial to threat biodiversity in Great Britain. Global Change
Biol. 20(12):3859-3871.
Ruffell, J., Didham, R.K., Barrett, P., Gorman, N., Pike, R., Hick-
ey-Elliott, A., Sievwright, K., and Armstrong, D.P. 2014. Dis-
 criminating the drivers of edge effects on nest predation: forest
edges reduce capture rates of ship rats (Rattus rattus), a glob-
ally invasive nest predator, by altering vegetation structure.
Philos. 29(6):761-780.
Santilli, C., and Durigan, G. 2014. Do alien species dominate plant
communities undergoing restoration? A case study in the Bra-
Santos, B.A., Tabarelli, M., Melo, F.P.L., Camargo, J.L.C., Andrade,
erishment of Amazonian tree communities in an experimentally
Scheidt, S.N., and Hurlbert, A.H. 2014. Range expansion and pop-
ulation dynamics of an invasive species: the Eurasian Collared-
Schepel, J., Reemer, M., van Kats, R., Ozinga, W.A., van der Lin-
Museum specimens reveal loss of pollen host plants as key fac-
Acad. Sci. USA 111(49):17552-17557.
Schnitzer, S.A., van der Heijden, G., Mascaro, J., and Carson, W.P.
2014. Horizon scanning for invasive alien species with the poten-
tial to threaten biodiversity in Great Britain. Global Change
Biol. 20(12):3859-3871.
Schultz, N.L., Reid, N., Lodge, G., and Hunter, J.T. 2014. Broad-
scale patterns in plant diversity vary between land uses in a
variegated temperate Australian agricultural landscape. Aus-
Schulz, S., Bedrosian, B., and Johnson, J.A. 2014. Low neutral
genetic diversity in isolated Greater Sage-Grouse (Centrocer-
cus urophasianus) populations in northwest Wyoming. Con-
Schwalm, D., Waits, L.P., and Ballard, W.B. 2014. Little fox on
the prairie: genetic structure and diversity throughout the dis-
btribution of a grassland carnivore in the United States. Con-

Vincent, A.C.J., de Mitcheson, Y.J.S., Fowler, S.L., and Lieberman,